Applied Finite Mathematics

Course Description

Course: MATH 261 Applied Finite Mathematics

Credits: 3

- **Prerequisite:** MATH 143, MATH 144, MATH 145, or MATH 153 with a C- or higher, or placement test.
- **Course Description:** Number systems, integer rings, finite fields, number theory algorithms, prime numbers and primality tests, factoring, and random numbers.

Course Objectives

After completing this course the student should have the following competencies:

- 1. an understanding of binary, octal, and hexadecimal numbers;
- 2. an understanding of integer rings and finite fields;
- 3. the ability to use the Euclidean algorithm, the Chinese remainder theorem, Euler's ϕ function, Fermat's little theorem, and Euler's theorem;
- 4. an understanding of the different methods that can be used to find prime numbers;
- 5. an understanding of factoring algorithms and their uses;
- 6. an understanding of the processes used to generate random numbers.

Course Outline

- 1. Number systems
 - Representations of numbers
 - Binary, octal, and hexadecimal numbers
- 2. Modular arithmetic
- 3. Integer rings
- 4. Finite fields
 - Galois fields
 - Extension fields
- 5. Euclidean and extended Euclidean algorithms
- 6. Chinese remainder theorem
- 7. Euler's ϕ function
- 8. Fermat's little theorem
- 9. Euler's theorem
- 10. Prime numbers
 - Finding prime numbers: Sieve of Erastothenes etc.

- Primality tests
- 11. Factoring
 - Divisibility and unique factorization
 - Factoring algorithms
- 12. Random numbers
 - Random and psuedorandom number generators

Bibliography

- 1. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Third Edition, Chapman & Hall/CRC Cryptography and Network Security Series. CRC Press, 2021.
- 2. Margaret Cozzens and Steven Miller. *The Mathematics of Encryption: An Elementary Introduction*. Mathematical World, V. 29. American Mathematical Society, 2013.
- 3. Samuel Wagstaff. *The Joy of Factoring*. Student Mathematical Library, V. 68. American Mathematical Society, 2013.
- 4. Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for Students and Practitioners. Springer, 2010.
- 5. Eric Gossett. Discrete Mathematics with Proof, Second Edition. Wiley, 2009.
- 6. Jeffrey Hoffstien, Jill Pipher, and Joseph Silverman. An Introduction to Mathematical Cryptography. Springer, 2008.
- 7. Shafi Goldwasser and Mihir Bellare. *Lecture Notes on Cryptography*. Available at https://cseweb.ucsd.edu/~mihir/papers/gb.pdf, 2008.
- 8. Albrecht Beutelspacher. Cryptology. Mathematical Association of America, 1994.